Finally the determined structure was compared with the predicted structure. In our previous paper we prepared nomograms that predict the atomic coordinates in terms of chemical composition (whence d_t and d_o) and observed b. Our program, however, was written in such a way that the atomic coordinates were functions of b and c sin $\beta = d(001)$. Even though agreement was found between observed and predicted values of bond lengths, s/u ratio, α , and ψ (Table 9), the disagreement on atomic coordinates may exceed 20 standard deviations. Many crystal-chemical features of the determined structure are not evident from the predicted one. Detailed determinations of additional key structures in the mica group are still desirable.

We wish to thank Dr E.W. Radoslovich (Division of Soils, C.S.I.R.O., Adelaide) for suggesting the problem; Dr J.L.Miller (U.S. Bureau of Mines, Norris, Tennessee) for the chemical analysis; Professor W.E. Love (Biophysics Department) for the use of the integrating Weissenberg camera. We are also indebted to Dr Charles W. Burnham (Geophysical Laboratory, Carnegie Institution of Washington) for use of the diffractometer, guidance in data collecting, help on the structure refinement, and critical reading of our manuscript; Dr H.M. Crosswhite (Physics Department) for use of the microphotodensitometer; Professor J.M. Stewart (University of Maryland) for help in computations: Dr Gabrielle Donnay (Geophysical Laboratory) for crystal-chemical discussions; to Dr Carroll K. Johnson for the preparation of the stereoscopic drawings. The refinement calculations were performed on IBM 7094 at the Computation Center of The Johns Hopkins University.

References

- BURNHAM, C. W. (1963a). Z. Kristallogr. 118, 127.
- BURNHAM, C. W. (1963b). An IBM 709/7090 computer program for computing transmission factors for crystals of arbitrary shape. Geophysical Laboratory, Washington, D.C.
- BURNHAM, C. W. (1965). Amer. Min. 50, 282.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). *A Fortran crystallographic least-squares program*, ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFFE, ORNL-TM-3060. Oak Ridge National Laboratory.
- DONNAY, G., MORIMOTO, N., TAKEDA, H. & DONNAY, J. D. H. (1964a). Acta Cryst. 17, 1369.
- DONNAY, G., DONNAY, J. D. H. & TAKEDA, H. (1964b). Acta Cryst. 17, 1374.
- DONNAY, J. D. H. & TAKEDA, H. (1964). Science, 143, 1162.
- FRANZINI, M. & SCHIAFFINO, L. (1963). Z. Kristallogr. 119, 297.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP: A Fortran thermal ellipsoid plot program for crystal structure illustrations. Oak Ridge National Laboratory Report ORNL-3794.
- KOHN, J. A. & HATCH, R. A. (1955). Amer. Min. 40, 10.
- MILLER, J. L. & JOHNSON, R. C. (1962). Amer. Min. 47, 1049.
- NORDMAN, C. E. & PATTERSON, A. L. (1957). Rev. Sci. Instrum. 28, 384.
- SMITH, J. V. & BAILEY, S. W. (1963). Acta Cryst. 16, 801.
- YAMZIN, I. I., TIMOFEYEVA, V. A., SHASHKINA, I. I., BELOVA,
 E. N. & GLIKI, N. V. (1955). Mém. Soc. russe. Min. (2)
 84, 415 (Min. Abs. 13, 419).
- YODER, H. S. & EUGSTER, H. P. (1954). Geochim. et Cosmochim. Acta, 6, 157.

Acta Cryst. (1966). 20, 646

Structure de l'Hydroxy-4-Coumarine. Eau d'Hydratation et Cohésion Cristalline

PAR JACQUES GAULTIER ET CHRISTIAN HAUW

Laboratoire de Cristallographie, Faculté des Sciences de Bordeaux, France

(Reçu le 16 juillet 1965)

The structure of 4-hydroxycoumarin monohydrate has been determined by a three-dimensional X-ray analysis with photographic data and refined by the least-squares method on an IBM 1620 computer; there are four molecules in the orthorhombic unit cell. Although the hydrogen atom positions have not been determined, it is believed that there are three hydrogen bonds between water molecules and 4-hydroxycoumarin molecules: $O(H) \cdots W = 2.59$ Å, $O \cdots (H)W = 2.73$ and 2.80 Å.

Nous décrivons ici la structure et l'organisation cristalline de l'hydroxy-4-coumarine que nous comparons à son homologue bromé-3 (Gaultier & Hauw, 1965c). Il était intéressant d'observer quel pouvait être l'aspect pris par l'hétérocycle en l'absence de brome. Le même intérêt pouvait se manifester au sujet de l'eau d'hydration qui était, dans le dérivé bromé, le facteur essentiel assurant la cohésion du cristal.

Données expérimentales

L'hydroxy-4-coumarine de formule chimique $C_9O_3H_6$ cristallise aisément sous sa forme hydratée par évaporation lente d'une solution dans l'alcool éthylique à 5% d'eau. La présence d'eau a été mise en évidence par la perte de poids des cristaux mis à l'étuve et par analyse quantitative effectuée au Laboratoire central de microanalyse du C.N.R.S. à Montpellier:

	C%	H%	0%
Trouvé	59,82	4,39	35,61
Calculé pour un monohydrate	60.00	4.44	35.56

Données cristallographiques

La maille déterminée sur clichés de Bragg (cristal oscillant) est:

 $a=10,11\pm0,02, b=12,18\pm0,02, c=6,95\pm0,02$ Å. Volume de la maille 856 Å³. Nombre de molécules dans la maille: 4. Densité calculée du produit monohydraté: 1,36. Groupe spatial: $P2_12_12_1$.

F(000) = 376.

Les intensités des 406 taches de diffraction observables (soit 43% des taches contenues dans la sphère de réflexion diffractées ont été mesurées visuellement sur rétigrammes de De Jong par comparaison avec une échelle standard. Les facteurs de diffusion ont été obtenus par développement polynomial de degré 9 en prenant les coefficients donnés par Brusentsev (1963).

Détermination de la structure

Nous avons pu nous faire une idée première de la structure grâce à quelques observations qualitatives effectuées sur les projections principales de la fonction de Patterson.

Projections de la fonction de Patterson

La projection (001) se caractérise en effet par une répétition reconnaissable au voisinage de $x/a=y/b=\frac{1}{2}$ du motif proche de l'origine de cette projection.

Les projections (010) et (100) très semblables entr'elles présentent cette même particularité de reproduction du motif central aux niveaux respectifs x/a=y/b=0avec $z/c=\frac{1}{2}$ et $x/a=y/b=\frac{1}{2}$ avec $z/c=\frac{1}{4}$.

Nous avons pu dès lors tirer la conclusion selon laquelle les molécules d'hydroxy-4-coumarine se présentent sur la projection (001) comme vues par la tranche et deux à deux superposées aux niveaux approchés $z/c = \frac{1}{8}, \frac{5}{8}$ pour un premier couple et $\frac{3}{8}, \frac{7}{8}$ pour le deuxième couple.

Ces premiers renseignements nous ont conduit à effectuer les sections de la fonction de Patterson aux cotes z/c=0 et $z/c=\frac{1}{2}$ (Fig. 1 et 2).

Sections de la fonction de Patterson

Nous pouvons observer (Fig. 1) que la section z/c=0de la fonction de Patterson est la représentation fidèle

Fig. 1. Section de Patterson z/c = 0.

Fig. 2. Section de Patterson $z/c = \frac{1}{2}$.

des diagrammes vectoriels de deux molécules, symétriques par rapport à y, parallèles au plan de section et allongées selon une direction voisine des axes bissecteurs de x0y.

La section $z/c = \frac{1}{2}$ (Fig. 2) montre la même figure dédoublée par une translation égale à environ 2,4 Å et parallèle à **b**. Cette dernière observation fixait les positions des centres moléculaires, par rapport à l'axe 2_1 parallèle à z.

Les substituants cétoniques O(2) et énoliques OH(4)pouvaient alors occuper quatre positions différentes à *priori* équivalentes; cette ambiguité a été levée en considérant les possibilités d'établir des liaisons hydrogène $C=O \cdots HWH \cdots O=C$, à la lumière de ce que nous avait appris la structure cristalline de la bromo-3hydroxy-4 coumarine. L'eau d'hydratation était localisée par une synthèse de Fourier-Bragg et une fonction

A C 20 - 4

différence de Cochran réalisées au photosommateur de Von Eller (1955), en attribuant aux facteurs de structure le signe des contributions des molécules organiques.

Affinement de la structure

Un premier calcul postérieur à la localisation de l'eau donnait pour facteur de reliabilité R=0,28. Nous avons affiné successivement, par moindres carrés sur ordinateur IBM 1620, les paramètres atomiques de position puis les paramètres B_i d'agitation thermique isotrope indépendants pour chaque atome.

Le facteur de reliabilité $R = \Sigma(|F_o| - |F_c|)/\Sigma|F_o|$ décroissait respectivement jusqu'aux valeurs 0,15 et 0,11 au cours de ces opérations*.

Nous n'avons appliqué aucune correction d'absorption et la règle de pondération adoptée était la suivante:

$$Vw = 1 \text{ si}|F_o| < |F^*| \text{ avec } F^{*2} = F_{\text{maximum}}^2/10$$

$$Vw = |F^*|/|F_o| \text{ si}|F_o| > |F^*|$$

$$Vw = 0 \text{ si}|F_{\text{calcule}}| < |F_{\text{minimum}}|$$

pour toutes les réflexions inobservées (18% du nombre de taches).

Le Tableau 1 donne les coordonnées finales des atomes (les atomes d'hydrogène n'ont pas été placés) et pour chacun de ces atomes le paramètre B_i d'agitation thermique isotrope.

Le Tableau 3 donne les indices hkl et les facteurs de structure calculés et observés.

* Cette valeur de R est calculée en tenant compte des 406 taches comprises dans la sphère de réflexion.

Tableau 1. Coordonnées atomiques et facteursd'agitation thermique

	x/a	y/b	z/c	B_i
O(1)	0,4228	-0,0845	0,3534	3,27 Ų
C(2)	0,4842	0,0157	0,3600	3,03
C(3)	0,4009	0,1109	0,3738	2,64
C(4)	0,2678	0,1021	0,3703	2,54
C(5)	0,0638	-0,0208	0,3729	2,68
C(6)	0,0123	-0,1283	0,3665	3,95
C(7)	0,0981	-0,2142	0,3608	4,13
C(8)	0,2387	-0,2064	0,3542	3,59
C(9)	0,2878	-0,0958	0,3593	2,28
C(10)	0,2015	-0,0072	0,3675	2,55
O(2)	0,6033	0,0168	0,3516	3,83
O(4)	0,1829	0,1878	0,3769	3.24
W	0,2896	0,3789	0,4305	4,04

2,59

Discussion

Configuration moléculaire

Les distances interatomiques et les angles de liaisons sont donnés Fig. 3.

L'hétérocycle répond à la formule développée donnée par les chimistes. Nous observons en effet:

une liaison double très localisée C(3)-C(4) = 1,35 Å, une liaison C(4)-C(10) = 1,49 Å correspondant bien à

la longueur 1,50 Å caractérisant la liaison simple à l'intérieur d'un cycle de résonance,

les liaisons O(1)-C(2) et O(1)-C(9) de 1,37 Å sont plus courtes que dans un hétérocycle saturé (1,41 à 1,44 Å dans les 'oses').

Tableau 2. Distances interatomiques extramoléculaires

	-	
W(I) W(I) W(I) W(I)	O(4, I) O(2, IV-a) O(2, III) O(1, III)	2,59 Å 2,73 2,80 3,54
O(4, I) O(1, I)	O(1, II) O(4, II)	3,70 4∙00
O(4, I) O(4, I) O(4, I) O(4, I) O(1, II) O(4, II) O(4, II) O(4, II) O(2, I)	C(8, II) C(6, III- <i>a</i>) C(7, III- <i>a</i>) C(9, II) C(5, I) C(8, I) C(9, I) C(6, II)	3,42 3,43 3,50 3,55 3,58 3,72 3,78 4,00
$W(\mathbf{I})$	C(6, III-a)	3,68
$C(5, I) \\ C(4, I) \\ C(3, I) \\ C(4, I) \\ C(9, I) \\ C(2, I) \\ C(2, I) \\ C(2, I) \\ C(3, I) \\ C(10, I) \\ C(3, I) \\ C(10, I) \\ C(6, I) \\ C(4, I) \\ C(5, I) \\ C(10, I) \\ C(10, I) \\ C(9, I) \\ C(10, I) \\$	C(2, II) C(9, II) C(6, II) C(6, II) C(4, II) C(5, II) C(5, II) C(7, II) C(10, II) C(3, II) C(3, II) C(10, II) C(10, II) C(2, II) C(4, II) C(4, II)	3,42 3,44 3,60 3,60 3,60 3,61 3,61 3,65 3,65 3,65 3,65 3,65 3,65 3,67 3,70 3,75
C(9, 1) C(2, I) C(7, I)	C(10, II) C(6, II) C(3, II)	3,75 3,78 3,78
C(7, 1) C(8, 1) C(5, 1) C(5, 1)	C(3, 11) C(4, 11) C(9, 11)	3,78 3,80 3,96
U(3,1)	C(4, 11)	3.98

Fig. 3. Distances interatomiques (Å) et angles de liaison (°).

Le cycle benzénique apparait légèrement déformé: les angles C(6)C(7)C(8) et C(7)C(8)C(9) et la distance C(6)C(7) sont anormaux. Remarquons que de telles liaisons courtes (1,36 Å) ne sont pas rares et que pour notre part, nous les avons déjà observées de nombreuses fois dans les dérivés de la naphtoquinone-1,4 (Gaultier & Hauw, 1965 a, b).

La liaison C(2)-O(2) = 1,20 Å est caractéristique de la liaison cétonique pure.

La longueur de la liaison C(4)–OH (1,35 Å), plus courte que celle de la liaison énolique normale (1,40 Å), est celle que l'on observe dans les phénols. Ce raccourcissement et celui de la liaison C(2)–C(3)=1,44 Å trou-

Fig. 4. Écarts au plan moyen (Å).

1/4

vent leur explication dans la présence de doubles liaisons conjuguées O(2) = C(2)-C(3) = C(4)-OH.

Le plan moyen calculé avec les dix atomes formant le noyau coumarinique est dans le système orthonomé XVZ: 1.287m + 24.8527 01.520 0

$$x - 1,387y + 34,853z - 91,539 = 0.$$

Les écarts des atomes à ce plan sont donnés Fig. 4. Les substituants et les carbones C(3) et C(4) de l'hétérocycle s'en écartent notablement; par contre le cycle benzénique est très plan: rapportés au plan moyen des six atomes C(5)C(6)C(7)C(8)C(9)C(10) les écarts n'excédent pas 0,008 Å.

Relations entre molécules

1/4

Les distances interatomiques extramoléculaires sont données au Tableau 2 et les plus remarquables d'entr'elles sont représentées Figs. 5, 6 et 7. (La Fig. 7 représente les projections des molécules I et II sur le plan moyen de l'une d'elles).

Les molécules d'eau sont, comme dans le dérivé bromé, très étroitement liées aux oxygènes hydroxyliques (OH $\cdots W = 2,59$ Å) et plus lachement aux groupements cétoniques avoisinants $[W(H) \cdots O = 2,73$ et 2,80 Å). L'oxygène de l'eau est donc tricoordonné et cette coordinance est presque plane: W s'écarte de

1/4

Fig. 5. Projection (001) de la structure.

0,32 Å du plan formé par les trois oxygènes avec lesquels il est lié. Par ailleurs elle n'est qu'à 0,26 Å du plan de la molécule la plus proche: ainsi la liaison $OH \cdots W$ est presque coplanaire avec la molécule.

D'autres distances doivent être notées: ce sont $O(4, I) \cdots C(7, III - a) = 3,43$ Å et celles qui sont observées entre molécules superposées (Fig. 3): ces distances, dont les plus courtes [C(1, I) \cdots C(2, II); O(4, I) \cdots C(8, II); C(4, I) \cdots C(9, II)] sont à peine plus longues que les distances de van der Waals qu'on observe dans le graphite, confèrent une certaine rigidité

à l'empilement des molécules suivant c bien que cellesci ne soient pas situées dans des plans rigoureusement parallèles..

Organisation de la structure

Dans la direction 'c' l'enchainement moléculaire est assuré en tout premier lieu par les liaisons hydrogène $= O \cdots HWH \cdots O =$ qui s'enroulent autour des axes hélicoïdaux 2₁ pour former des lignes de force auxquelles sont accrochées, à chaque période, quatre molécules d'hydroxy-4-coumarine. Chacune de ces quatre molé-

Tableau 3. Facteurs de structure	observés, calculés et leurs pl	hases
----------------------------------	--------------------------------	-------

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

cules est également liée, par son groupement cétonique ou hydroxylique resté disponible, à une deuxième ligne de force hélicoïdale.

L'eau est, dans ce premier aspect de l'organisation cristalline, le facteur important de cohésion cristalline.

Cet édifice est consolidé par les très fortes liaisons de van der Waals s'exerçant entre molécules superposées et déterminant leurs positions relatives.

Comparaison de l'hydroxy-4et de la bromo-3-hydroxy-4-coumarine

Ces deux composés sont des 'antivitamines' K et leurs activités pharmaceutiques ont fait l'objet de nombreuses études (Meunier, Mentzer & Vinet, 1946) (Kaiser, 1960).

Fig. 6. Projection (100) de la structure.

Fig. 7. Projection des molécules I et II sur le plan moyen de l'une d'elles.

Ils cristallisent dans des groupes spatiaux différents $P2_12_12_1$ et $P2_1/n$.

L'hétérocycle parait ici plus conforme à ce que l'on attendait.

	Théorique	Hydroxy-4	Bromo-3-
O(1) - C(1)		1 37 Å	hydroxy-4
O(1) - C(9)		1,37	1,43
C(2) - C(3)	1,50 Å	1,44	1,43
C(3) - C(4)	1,33	1,35	1,41
C(4) - C(10)	1,50	1,49	1,43
C(2)–O(2)	1,20	1,20	1,26
C(4)-O(4)	1,37	1,35	1,34

Le cycle benzénique prend respectivement les aspects suivants:

C(5) - C(6)	1,41	1,40
C(6) - C(7)	1,36	1,39
C(7) - C(8)	1,42	1,36
C(8) - C(9)	1,43	1,39
C(9) - C(10)	1,39	1,39
C(10) - C(5)	1,40	1,40

Ces composés présentent tous deux des liaisons hydrogène fortes.

		Bromo-3-
	Hydroxy-4	hydroxy-4
$OH \cdots W$	2,59	2,55
$C = O \cdots (H)WH$	2,73	2,83
	2,80	2,87

mais alors que dans le présent composé ces liaisons s'enchainent suivant une hélice de direction c, dans le dérivé bromé les liaisons $= O \cdots HWH \cdots O =$ se répartissent autour d'un centre cristallographique et se referment sur elles-mêmes.

Les types de superposition des molécules sont très apparentés; dans les deux structures on observe que deux des liaisons C-C ou C-O d'un cycle se superposent à deux diamètres des cycles de la molécule suivante. Mais dans le composé non bromé, les molécules superposées ne sont pas plans-parallèles: elles ont légèrement basculé autour du diamètre de superposition.

Les distances les plus courtes entre atomes de molécules superposées sont du même ordre.

		Bromo-3-
	Hydroxy-4	hydroxy-4
$O(4, I) \cdots C(8, II)$	3,42	3,45
$C(4, I) \cdots C(9, II)$	3,44	3,44
Demostore onfiniava la	aamnaaá hram	á ast afflaras

Rappelons enfin que le composé bromé est efflorescent à la température ordinaire, alors que l'hydroxycoumarine ne se deshydrate qu'aux environs de 100°.

Références

BRUSENTSEV, F. A. (1963). Soviet Phys. Cryst. 8, 263.
ELLER, G. VON (1955). Bull. Soc. franç. Minér. Crist. 78, 157.
GAULTIER, J. & HAUW, C. (1965a). Acta Cryst. 18, 179.
GAULTIER, J. & HAUW, C (1965b). Acta Cryst. 18, 604.
GAULTIER, J. & HAUW, C. (1965c). Acta Cryst. 19, 927.
KAISER, C. (1960). Burger, Medicinal Chemistry. 2nd ed., p. 119.

MEUNIER, P., MENTZER, C. & VINET, A. (1946). Helv. chim. Acta 29. 1291.